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o Motivation: Film Formation by
m;ﬂ\] Ener getic Condensation

0 Energetic Condensation:
o Growth of films from hyper-thermal species
o Kinetic energy > Surface and bulk displacement energy
o Subplantation

l

0 Film properties:
o good adhesion, intermixed layer
o dense
o often with enhanced hardness, Y oung’s modulus
n conformal coating of nanostructures, trench filling possible
o usually under intrinsic compressive stress
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oo Motivation: Film For mation by
m;!ﬂ\] Energetic Condensation

0 High kinetic energy of film-forming species obtained via
plasma in combination with bias

Film growth is still possible for

|mplantation _
- low duty cycle of bias
o
G [« sputter yield = 1 for E=300-1200 eV
LL
S lon plating, MePI11D
= Subplantation ; .

; cathodic arc deposition
- sputtering
Deposition :
evaporation
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ooy Effect of Self-ion Bombardment

—] on Film Microstructure
0 Densification of Ti film by Ti ions (self-ion assistance)
al room temperature lTi (without ions)

Ti" (50 eV) --> Ti film

1.0

AVERAGE DENSITY
o
©
Ll

1 1 i 1 1

0 0.2 0.4 : %
ION-TO-ATOM ARRIVAL RATE RATIO Martin et a. JVST 5 (1987) 22
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Cathodic Arc and Sputtering:

A First Simplistic Comparison
Cathodic Arc | Sputtering

source cathode target

background vacuumor gas |gas

Kinetic energy high(>20eV) [|low (<10eV)

degree of very high very low

lonization

mean ion charge |usually 2* usually 1*

State

macroparticles |yes no
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Filtered Arc and Pulsed Sputtering:
A First Simplistic Comparison

Filtered Cathodic |Pulsed Sputtering
Arc
source cathode target
background vacuum or gas gas, sputtered
material
Kineticenergy | high (> 20¢eV) low (<10 eV)
degree of very high low - high
lonization
mean ion charge | usually 2* usually 1*, also 2*
State
macroparticles |very few few (arcing)
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Status Part 1:
Cathodic Arc Plasmas
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- Cathodic Arcs:

r

Oldest, still “Emerging” Plasma Coating
0 Discharges and Plasmas were made as soon as

energy storage was invented. QUOTE Joseph Priestley:
) wora “Junethe 13, 1766. After

discharging a battery, of about
forty squar e feet, with a smooth
brass knob, | accidentally
observed upon it a pretty large
circular spot, the center of
which seemed to be superficially
melted...
...Examining the spotswith a
microscope, both the shining
dotsthat formed the central
® gpot, and those which formed

- theexternal circle, appeared
evidently to consist of cavities,
resembling those on the moon,
asthey appear through a
telescope, the edges projecting
shadows into them, when they
were held in thesun.”

—_ —

e

A. Anders, IEEE Trans. Plasma Sci. 31 (2003) 1052
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Cathodic Arc Plasma Coating on Glass:
TheVery Flrst Steps

] | I
s\ -
.

oo

2

“I next laid the chain upon a plece of ‘
glass,...the glass was marked in the most |
beautiful manner, wherever the chain had
touched it; every spot the width and
colour of the link. The metal might be
scraped off the glass at the outside of the | | |
marks; but in the middle part it was |
forced within the pores of the glass; at
least nothing | could do would force it off.
On the outside of the metallic tinge was ;.
the black dust, which was easily wiped
off.” Joseph Priestley, 1766. ”

Frreorr | |

Fig
s r-'-'%.i "]

-Cathode spots
-Macroparticles

-Reactive deposition
-Coatings with good adhesion

A. Anders, IEEE Trans. Plasma Sci. 31 (2003) 1052 ~~ “ =
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o Cathodic Arcs: Explosive Plasma
Formation at Cathode Spots

plasma at cathode spotsis
formed explosively

spot models include “explosive §
electron emission” and
“ectons’ (Mesyats)

spot may have explosive and
evaporative phases

current density in explosive
phaseis high, ~ 1012 A/m?
voltage between electrodesis
low, ~ 20 Volts, though areal
power density is high, ~ 1013
W/m?

Photo courtesy of B. Juttner
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; , Explosive Cathode Erosion and

BEAKELEY LAS

0 arc spots/ spot
fragments leave
crater traces

0 type or mode
depends on
surface conditiong

from A. E. Guile, B. Jittner,
ZIE Preprint 80-2, Berlin, 1980
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Dynamics of Arc Spaots:
High-Speed Photography

Streak camera picture courtesy of B. Jittner (1995)
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g Dynamics of Arc Spots:
Y g Laser Absorption Photography

0 development of cathode spots, Cu, 100 A, At between pictures 3ns

A. Anders et a., IEEE Trans. Plasma <ci. 24 (1996) 69

_100m | -
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=2
0 lon charge state spectrometry reflects plasma condition
at equilibrium = non-equilibrium transition zone,

the “freezing zone” near cathode spot

Cathode Spot Models

expanding,

non-equilibrium

plasma freezing
zone
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oy : lon Charge States

... | and Electron Temperature
electron o -
terr]permure E | | | | | | | | | | | E .
derived by using | 7 ¢ 1 3
freezing model 5 ”e
% 5 f f 2
= . Q|
= 4f 1 15
3 11
2 | 4 05
1 - | | ] E | | ] | ] | E ] ] ] ] | | - O
0O 20 40 60 8 100

Z
A. Anders, Phys. Rev. E 55 (1997) 969
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o | mproved Freezing M oddl:
Partial Local Saha Equilibrium

0 Develop analogy to what is known in optical spectroscopy:
o “Complete Local Thermodynamic Equilibrium” (CLTE)
o “Partial Local Thermodynamic Equilibrium” (PLTE)
0 Plasma Optical Spectroscopy:
0 system of excitation and de-excitation rate equations
0 Plasma Charge-Sate Spectrometry:
o system of ionization and recombination rate equations

=~ Ner1Ne @Qr1,Q ~ Qe Ao+ for Q=0
N 2 2
=~ Ne-1Nefo-1Q *Nar1Ne dQr1,Q ~NQNe AR+ ~ Qe 4Q.Q-1

for Q >0

BERNELEY LAR I
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Partial L ocal Saha Equilibrium

=2
E
optical %//////{/A/{//////%com.
Spectroscopy 4EE} PLTE
3__
levels o_f 2
atom or ion
1+
grouﬁa level

charge +4—+

state

A. Anders, IEEE Trans. Plasma Sci. 27 (1999) 1060
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'3:1\] lon Acceleration at Cathode Spots

CITTTINEREY

0 Acceleration by
0 pressure gradients (e.g. multi-fluid theory)
o electron-ion “friction”

0 lon drift velocity > lon sound velocity, M=3-6
0 lon drift velocity amost independent of charge state

0 may consider plasma et as afully-compensated,
low-energy ion beam, 20-150 eV

most complete table of experimental velocity data:
Anders and Y ushkov, J. Appl. Phys. 91 (2002) 4824
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o Example: Carbon Vacuum Arc
m;;:,\] lon Velocity Distribution Function

5000 | C

. —0.1 Hz
= ---- 1Hz
5 4000F = =2 Hz
o) e 4 Hz
| -
8 3000 k-
q_'.'_
2
S 2000 [
=
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e
‘= 1000
e
2
()

O [ ] [ ] [ ] [ ] [ ] [ ] T~

12000 15000 18000 21000 24000 27000 30000
lon velocity (m/s)

—— . Byon and A. Anders, J. Appl. Phys. 93 (2003) 1899



o Example: Platinum Vacuum Arc
m;;:,\] lon Velocity Distribution Function

600 - F)t
500

400

I
w
o
o

200

100

Distributions, f, (arb. unit)

o

5000 6000 7000 8000 9000 10000 11000 12000

lon velocity (m/s)

—— . Byon and A. Anders, J. Appl. Phys. 93 (2003) 1899



0 lon bombardment of the cathode can melt the
surface layer

0 the melted surface is subject to the momentary,
“pulsed” 10on pressure

0 video clip: response of liquid surface to pulsed
pressure

Macroparticles

. B IIT- N, gwry—
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e Explosive Emission and
.. M acr oparticle Formation

“Frozen” nonlinear wave of liquid metal in stron electric field

,.ﬂ'""‘

Gabovich and Poritskii, JETF Lett. 33 (1981) 304

BERELEY Lam

André Anders, Plasma Applications Group



ELECTRON

A M acroparticle Formation | 720

0 Macroparticles are formed as part of the ION PRESSURE
explosive plasma formation

0 Typical: Material is ejected from the liquid

nool between plasma and solid
Figure: 10 ns discharge on Mo
courtesy of B. Juttner, Berlin
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Cainodic Arc
IV zicr operriicles

Picture: Courtesy of B. Wood, Los Alamos, NM
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A_\J\j M agnetic Guiding of Plasma
0 Guiding center of charged particles is bound to field lines

Photo: NASA
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o _m] M acr oparticle Removal

o el by Magnetic Filtering

DC arc %
source 20 -duct e
filter ‘.
“Classic” 90° Filter Duct S
I.Aksenov, et al., Sov. J. Plasma Phys. 4 filtered plasma+
(1978) 425
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_ ﬂ Open Filter for Cathodic Arcs

streaming, clean
metal plasma

review on filters:
A. Anders, Surf. Coat.
Technol. 120-121 (1999) 319

. BRl4l M. g®yy
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=N Venetian Blind Filter

DEAKELEY LAS

Filter
i Lamelltn

Setliche

W”“

fum J.J;;_j;:

H7ANN

Sthutzbleche

£ lrn||

1 ////// £

Leitliche
Schutzbleche

:
P
T .o

» Ryabchikov and Stepanov, Rev.
i, Instrum. 69 (1998) 810

M. Bilek, et al., IEEE Trans.
Plasma Sci. 27 (1999) 1202.

e O. Zimmer, PhD Thes's, Ruhr-
Universitéat Bochum, 2002.
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(B EAKELEY LS

’:'i] Today's Typical I ndustrial Arc Coating

Lid "_':"'_fmmuﬁlml
T

li’!l L
1 L{UJ‘L

" AIP4024/6036

[ —

0 example: TiN or TIAIN on tools; reactive deposition at
elevated temperature, unfiltered

0 market value added: about $1B/year Pictures; Cobelco, Japan

BERELEY Lam
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Status Part 2
Pulsed Sputtering
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_”g@ Development of Pulsed Sputtering
0 Diode Sputtering observed
< Bio 1190 as early as in 1850s

0 actually: pulsed diode
sputtering

W lAl- M., g®sNy |
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w2 |-V Characteristic for DC Dischar ges

BEAKELEY LAS _
|

|Sub- | Normal iAb- |

. I |
generic o (Gl {roma
text-book } ! | |Trn-
. | I sition i
discharge : : B high current
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PEAKELEY LAS

voltage
A

|-V Characteristic and Arcing

stable

arcing possible

—

;\classictransition

Chopping

of type 1

Chopping
of type 2

pulsed (glow)
sputtering
characteristic

time-dependent &

condition-dependent

transition 2
arcing

\ _—

i

arc characteristic

>
log (current)

. BRl4l M. g®yy
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’:]\'1 Experimental |-V Characteristics

1600 + -
—O— Pulsed, 30 ps @ 30 p.p.s. d d
1400 4 -
12001 W target Slopeqg-1
1 |p=1Pa Ar

600

Discharge Voltage, V,, (V)
3
=

400 -

200 4 :
V 1 « Anders, Surf. Coat. Technol.
e hn T (2003)in print

o for Cr target: Ehiasarian, et

Discharge Current, /, (A)
al., Vacuum 65, 147 (2002)
. BRl4l M. gwyy -
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o . Types of Pulsed Sputtering
e .
0 Medium-Frequency, “Medium” -power pulsed sputtering
o Developed in the 1990s
o Unipolar or bi-polar DC pulsed
o Medium frequency (high duty cycle): 10-350 kHz
o “Medium” pulsed power and current density:

Up to several 100 W/cm? (peak)

Limitations by
Up to several 100 mA/cm? (peak) - average power / cooling
| | - arcing
0 High Power Pulsed Sputtering - power supply

o Introduced in late 1990s
o Low frequency (< 1 kHz); low duty cycle
o Very high power and current density
Several 1000 W/cn (peak)
Several 1000 mA/cm? (peak)

N IlAl M. gwsy |
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Pulsed, M edium-Frequency Sputtering
0 Example:
1200

o ] Types of Pulsed Sputtering:

300 600 900 1200
= ot
o / N[ e

T ]
| nodischarge
plasma build-up i decaying plasma

J. Musll, et al., J. Vac. <.
Technol. A, 19 (2001) 420

. BRl4l M. g®yy
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oy Types of Pulsed Sputtering:
High Power Pulsed Sputtering

Cu target, 65 mPa Ar
Delay: no simmer | 200 [T T

discharge Z Tsoo
1soN- Peak power
_ 500 kW (!)
a ! -_EIU{}
Eﬂ 1000 | 1
> _

—_
B = o s — —
=

0 . S0 100 | 50 200 230
Time [us]

V. Kouznetsov, et al., Surf. Coat. Technol. 122, 290-293 (1999)
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’1\) High Power Pulsed Sputtering

CITTTINEREY

0 Proposed by Kouznetsov and co-workersin late 1990s
0 use of traditional sputter magnetron

0 Increase power during pulses by > 2 orders of
magnitude

0 average power Iswithin acceptable level by using low
duty cycle

0 observe increased degree of ionization by

n Optical spectroscopy
o Charge-to-mass spectrometry
o Blased quartz-crystal balance technique

BERNELEY LAD I
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e ; Self-Sputtering

]
lon acceleration In to substrate
target sheath (ions)
y / Condition of
Self-Sustaining
sputtering Self-Sputtering diffusion
from target apfy>1

loNization
a

thermalization
by collisions

to substrate
(atoms)

BERELEY Lam
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Self-sputtering yield (atoms/ion)

”:1\1 Self-Sputter Yield

PEAKELEY LAS

10° 10° 10°
Energy of primary ions (eV)

André Anders, Plasma Applications Group

Carbon cannot go in
mode of self-sustained
self-sputtering

Monte Carlo
Simulations
Anders, et al, |IEEE
Trans. Plasma ci. 23
(1995) 275




discharge volts

oo Current-Voltage Characteristic
for High Power Pulsed Sputtering

0.01 0.1 1
2 3 4567 2 3 4567 2 3 4
| N 1l L
[—cabongPps seamodse) ]|

1l—=— Al (HPPS, 6" cathode) )
—— Al (HPPS, 2.5" cathode) N o
—A— AI (DC 2 5" cathode)

7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

777777777777777777777777777777777777777777777

B. M. DeKoven, et al., 46th SVC
. | Conference, San Francisco, CA, 2003.
2 3 4567 Y 5 4ty ] Y 3 4
0.01 0.1 1

target current density (Amps / cm2)
- EIidl M. gy y
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e |

0 Example: Cutarget, ion
energy measurements

0 lonization of sputtered
material

0 for Cul[and Ag] even at
moderate power density
and high frequency!

Intensity (counts/s)
_o:h
|

A 21-25 W/

103-: ,E

300-550 W/cm?

A
|, =50A
t_=50-70us

l,=5A
t_=50-60us

Vlcek, Pajdarova, Musil, 10°4—

Contrib. Plasma Phys. (2003)

4 | 6 8 10 | 12
lon energy (eV)
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/-\l Distribution Functions and
e Rate Coefficients

-1
Mean freepath A, = [Z nﬁaaﬂ}
14

S(e€), g,

¥,
: 5 i ..'Er .':.a:-
o, -ﬁ o) A

N AP L, W ——

10
e(eV) e, =eVi
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T | nter pretation of
“=AH  Child Law (1911) for Plasma Sheath

Poisson eguation

Space charge limited current

\ 4

self-adjusting sheath
(Child Sheath)

go I:I’E: p

Child current

i =2 (ZGT/ZVP’/ :
0 m 2

Schild ~ ?/]De

9 S
2 (Zevo )3/4
- KT,

\

Plasma density increases - Sheath thickness decreases

ders, Plasma Applications Grou
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nlm..

Transent Sheath

0 Resource: Pl theory.

0 conformal 1on implantation of plasmaions by
acceleration in high voltage sheath

"[/

'u'auuum

André Anders, Plasma Applications Group

-1 Chamber filled
-~ with plasma

Positive lons
_ Strike AN
Surfaces
Simultaneously

i
AT

#
——
—
--\_\__‘_l__'l‘-‘r

High v
Olt




”’11\] Sheath Development

e If pulseriseissow: 7. =t . _w., . >1

rise rise”pl,i

lon matrix sheath does not exist Examples of
but time-depended Child sheath. dimensionless
parameters

« If pulse sequenceisfast T =l /trestore <1

2
\l, where t_ .= orild
Dambi
Multiple-pulse effects exist. D, =kT u/e

BERELEY Lam
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Sheath Development
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’311\] Transient Sheath: PIC Simulations

CITTETINEEWTY .
4x10™ SOt
S 4 10 us |
E
z |
Z
o 2 |
a
. |
o
]
1 |
. LS First bias pulse
o, R . . . |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Position (m)
B. Wood, in: Anders (Ed.), Handbook of PI11&D, Wiley, N.Y. 2000



'\4\3 Transient Sheath: PIC Simulations

4x10" F

W
T

(\)
T

Ion Density (m)

After first bias pulse
|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Position (m)
B. Wood, in: Anders (Ed.), Handbook of PI11&D, Wiley, N.Y. 2000




reeiee ; Transient Sheath: PIC Simulations

CITTTINEREY

4x10"

()
T

Ion Density (m3)
(\»}

Second bias pulse
. . |

2 0.3 0.4 0.5 0.6 0.7
Position (m)
B. Wood, in: Anders (Ed.), Handbook of PI11&D, Wiley, N.Y. 2000



| Multiple-Pulse Effects
at High Duty Cycle

0.6

&
n

=
T
1

Sheath Position (m})
O =
r-J L

.

0 10 20 30 40 50 60 70 20
Time (Us)

B. Wood, in: Anders (Ed.), Handbook of PI11&D, Wiley, N.Y. 2000



g Multiple-Pulse Effects
A\d\] at High Duty Cycle

Ion Current (A)

0 10 20 30 40 50 60 70 80
Time (s}

B. Wood, in: Anders (Ed.), Handbook of PI11&D, Wiley, N.Y. 2000



Ongoing and Future
Developments. Vision



o5 ; Ongoing and Future Developments

Vision
0 Cathodic arcs
o Improved filters
o Research in filtered, reactive arc deposition
o Large area coating, linear sources
o Use of advanced biasing (plasma immersion deposition)

0 Pulsed Sputtering

Research in ionization enhancement

Control, limitation, elimination of arcing

Scaling to larger areas

Use of advanced biasing (plasmaimmersion deposition)

0 For both:

o Graded (multi-)functional films
o Stress-controlled films
0
O

U
U
U
U

Nanostructures
Bio-compatible coatings and structures

- Eldl M. gy OO
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Out-of-plane, double-bent filter

1 Out-of-plane double- r
bent filter from
Nanyang Technical
University Singapore

0 closed architecture

0 commercial version; f

Shimadzu DL C-
MR3CA

X. Shi et al., Thin
Solid Films 345
(1999) 1

André Anders, Plasma Applicat



=N Twist Filter

DEAKELEY LAS

scompact, open architecture, pulsed
e Anders and MacGill, Surf. Coat.
\ Technol. 133-134, (2000) 96

_ :_,."351':,5??: . .r ./ f

EREELEY =
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S Effect of Noble Gases
ceeee on lon Charge States

Metal lon Charge States> 3+

1¥ Arutiun P. Ehiasarian,

- 3+

- Nb |SDEIV 2002
— R
o
9 I ~
E Cr3+
S 01+
Q -
n4
c X
O X
© .
= " NbYT A
G.J _
%0.01 E \
O : e -0 Ne
|5 —A— Ar

- Kr
0.001 ! B e EEE—
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

Gas Pressure, Pa
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S Effect of Noble Gases
ceeee on lon Charge States

Metal lon Charge States < 3+

1+
- Arutiun P. Ehiasarian,
o ; ISDEIV 2002
+— B 2+
w . Nb
8 01+ P
& 2
c N crtt
O R
®© i
< Nbl+
S 001+
% E —o— Ne
(é R —a— Ar
N B —a— Kr
0.001 [ [ IIIIII: [ [ IIIIII: [ [ IIIIII: [ BN ENIT

1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
Gas Pressure, Pa
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¥ Example of in-situ Diagnostics of High
mm\ml Power Pulsed Sputtering

lonization vs. power to magnetron

s

100 -

o0]
o
T

/H

o
o
) I )

1N
o
T

Measured with d.c. sputtering
- T /
7

] 1 ] 1 ] 1 ] 1 ] 1 ] 1 |
0 50 100 150 200 250 300
Applied peak power (kW)

N
o

lonic to neutral emission (%)

Johan Bohlmark and Ulf Helmersson, Linkoping University, Sweden
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Example of in-situ Diagnostics of High

] Power Pulsed Sputtering
n0.33
d (Plasma density)?-33

dTimescale 0-1.8 ms
15 cm diameter target

M easurement area

Larget

o
o

S
o =T

26 cm

28 cm

Johan Bohlmark and Ulf Helmersson, Linkoping University, Sweden
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e . Pulsed Plasma and Arcing

PEAKELEY LAS

0 Example: Al target,
Ar/O, mixture, bipolar

A. Bekind, et al., 41st Annual Tech. Conf.
Society of Vacuum Coaters, Boston, 1998.
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] Pulsed Plasma and Arcing
g

0 Arcing:
n Conditions of explosive electron emission are fulfilled:

o high electric field (>107 V/cm) at target (= cathode) surface due
to

small sheath thickness at high plasma density
surface charging if target is insulating or “poisoned”
0 elevated temperature promotes el ectron emission and surface
atom desorption and evaporation

o prolonged ion bombardment and thermo-field emission leads to
formation and explosive destruction of emission centers

0 voltage “breaks down” from ~500 V to <50 V

0 Arcing = unwanted cathodic arc
0 generates non-uniform plasma and macroparticles

BERNELEY LAD I
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a-C multilayer made by carbon

PIIID

0 S substrate, Pl
Intermixed layer

(C, 2.2 keV)

0 “hard” aC (2200 eV)
& “superhard” aC
(100 eV)

(4 double layers)

I200 nm

Percentage of soft phase

12 |
g —o—multilayer |2
% m singlelayer | -
7 P ;
0 3
7 ]
:
3 -
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g The Environment Dependent
Interaction Potential (EDIP)

Courtesy of Dave McKenzie,

0 For Silicon: Justo et al, Phys Rev B 56, 2539 (1998)
0 For Carbon: Marks, Phys Rev B 63, 035401 (2001)

U :Zuz(rij1zi) +ZU3(rij1rik’ 91Zi)

0 Interactions vary with the
number of neighbours Z

0 Non spherical terms U, are

needed to

describe sp and sp? carbon
- EIidl M. gy y

André Anders, Plasma Applications Group

alom I a‘lc,rn i



a4 Carbon EDIP Film Growth-Effect
of Varying Deposition Energy
Courtesy of Dave McKenzie,
0 Sp: green
0 sp?: blue
0 spd: red

0 Left: 1 eV
o mainly sp?
o low density

0 Right: 70 eV
o mainly sp3
o high density

André Anders, Plasma Applications Group



—~_. TIhe Shape of a Thermal Spike In
f\iﬂ P P

Amorphous Carbon
160 Impacts at 200eV 160 Impacts at 400eV
Red=atom
moved . _
=l <
more than = =
0 o
onebond & | ..t | & | muEn
length . L
Simulations by _op | _ 20 | ) ';- e
Gareth Pearce using § =9
the EDIP potential.
-25 - - - . -25 - - -
-5 -3 0 3 6 -6 -3 0 3 6

Width (A) Width (A)
. Eolala4Magyg~s-y |
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MD Simulation of

I I S e g (e
NN e e Thermal Spike
l(‘!% }:!“?ﬂ.??j]}#f\h} @‘%ﬂh ¥ J‘! <,
N0/ IS o - - -
(p2h 2a 0 7700y © Movie showing a single 500 eV
s N impact onto a carbon film under
R = ; )

stress.
 The average number of atoms
affected is about 20.
 Blue atoms received >0.4 eV
 Time scale changes in presentation

ol )

Acknowledgements:
Nigel Marks, Jenny Bell, Dave McKenzie.
Movie by Gareth Pearce.

% » M. Bilek, etal., IEEE Trans. Plasma Sci. 31
25" (2003) 939

t=-0.001 ps KEmax= 0.0
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oo In-situ Monitoring of Stress for
Stress Control during Growth

Courtesy of O. Monteiro,

Deflection of a laser beam

e o

* N. Honda et al., Sensors and
Actuators A 62, 663 (1997) !
» C Fitz et al. Surf. Coat. Technol. /
128, 474(2000)

* G. Moulard et al. J. Vac. Sci.
Technol. 16, 736(1998)
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PEAKELEY LAS

|ntrinsic Stress in ta-C Films

MePIIID, filtered cathodic arc

arc pulse master
power (e—— pulse —»
supply generator

gated
pulse
generator

(@)

17, macroparticle
filter

= high voltage
<ub str’ate§ pul se generator

arc arc
plasma plasma
pulse pulse
(b) —|ﬂ‘_|_|—|_|
substrate substrate
bias pulses bias pulses
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Strass (MFPa)
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Bias voltage is used to change
carbon energy and therefore

bonding and stress in film
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—A:'{] Stress Relaxation by |on Bombardment

12000 Stress is relaxed by
| periodically increasing the
10000 |- incident C+ ion energy
g
E_ a000
@ 000 L . F|_Im Qensny Is a good
2 indication of sp2 content.
t{: POt . Density of a monolithic
_Z I, fllm (VbIaS = '100 V) =
E 2000 | 2.81¢ _cm'3,
o i  Density of relaxed ta-C
3 of film = 2.79 g cm3
&  Thick ta-C films can be
-2000 made without thermal
—_— L annealing
0 10 20 30 40 50

Thickness (nm)
M. P. Delplanck-Ogletree and O. R. Monteiro, Diamond & Rel. Mat., 2003
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”Qﬁ\\l Example: Using ionized metal

PEAKELEY LAS

Copper Metallization of sub-pum trenches

Issue:
voids form if vapor / plasma does

not have correct impact angle and  perfect filling of trenches using i-PVD,
energy but here with cathodic arc MePIIID

O.R. Monteiro, J. Vac. Sci. Technol. B 17 (1999) 1094
- EIidl M. gy y
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’3\4\] Summary

0 Filtered cathodic arcs and pulsed sputtering can be used for
energetic condensation of films
0 films are dense, often with compressive stress, tunable by bias

0 Important issues include
o complete filtering of macroparticle for cathodic arcs

o complete elimination of arcing (hence macroparticles) for pulsed
sputtering

0 self-sputtering mechanism may play an important role in
pulsed sputtering

0 arcing is nothing el se than unwanted cathodic arcs

0 films with superior properties have been made with both
techniques

0 Outlook: growing role of in-situ monitoring, stress control

BranEL Yy Lam
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